
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, VOL. 27, 41±55 (1998)

UNSTRUCTURED MESH PROCEDURES FOR THE SIMULATION

OF THREE-DIMENSIONAL TRANSIENT COMPRESSIBLE

INVISCID FLOWS WITH MOVING BOUNDARY COMPONENTS

O. HASSAN1*, E. J. PROBERT2 AND K. MORGAN1

1 Department of Civil Engineering, University of Wales Swansea, Swansea SA2 8PP, U.K.
2 EMBS, University of Wales Swansea, Swansea, SA2 8PP U.K.

SUMMARY

The solution of high-speed transient inviscid compressible ¯ow problems in three dimensions is considered.
Discretization of the spatial domain is accomplished by the use of tetrahedral elements generated by Delaunay
triangulation with automatic point creation. Methods of adapting the mesh to allow for boundary movement are
considered and a strategy for ensuring boundary recovery is proposed. An explicit multistage time-stepping
algorithm is employed to advance the ¯ow solution. A number of examples are included to illustrate the
numerical performance of the proposed procedures. # 1998 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Unstructured mesh methods are now widely employed for the simulation of steady inviscid

aerodynamic ¯ows.1 Domains of complex geometrical shape can be readily represented by

unstructured assemblies of elements, and fully automatic unstructured mesh generation procedures

exist for the discretization of the domains which are typically encountered in ¯ows of industrial

interest. Problems associated with the accuracy of ¯ow algorithms on such general grids are being

addressed2 and recent work has demonstrated the successful extension of the approach to provide an

unstructured mesh capability for steady viscous ¯ow analysis.3 The unstructured mesh approach can

naturally accommodate adaptivity, and numerous techniques such as mesh movement, mesh

enrichment and adaptive remeshing have been employed for steady inviscid ¯ow analysis.4 Initial

experiences with these adaptivity techniques applied to viscous ¯ow simulation have proved to be

encouraging.5

Transient inviscid aerodynamic ¯ows with ®xed boundary components have also been simulated

successfully using the unstructured mesh approach. The ¯ow features detected in such problems may

be accurately represented by the employment of mesh adaptation.6,7 When consideration is given to

the simulation of aerodynamic ¯ows involving moving boundary components,8,9 where the shape of

the geometry is changing continuously, the use of some form of mesh adaptation is essential. The
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simulation of three-dimensional ¯ow can be computationally expensive and it is necessary to

minimize the amount of mesh adaptation which is performed. One possible approach10 to such

problems is to hold the mesh ®xed and simulate the motion of a body by modifying the boundary

conditions at the surface of the body. This procedure can be expected to be effective if the prescribed

movement of the body is suf®ciently small. However, in the case of large-scale displacements

alternative procedures must be devised.

Here we propose a method using an unstructured grid approach which has been designed to

provide an automatic adaptive mesh capability for solving transient compressible ¯ows involving

moving boundaries. The mesh generation procedure which is employed is the Delaunay triangulation

method with automatic point creation.11,12 With this approach a distribution of sources can be placed

in regions where additional mesh resolution is required13,14 for the accurate representation of ¯ow

features. When a mesh has been generated to cover the domain of interest, the compressible Euler

equations can then be solved to simulate the ¯ow over the body of interest. The ¯ow solver is based

upon a Galerkin weighted residual approximation,15 with an edge-based data structure which is the

most ef®cient of the possible alternatives. The solver includes a deforming mesh algorithm to move

the mesh in transient computations where the geometry is changing. Local mesh regeneration,

employing a method of boundary recovery which ensures mesh conformity, is adopted. A number of

numerical examples are included to demonstrate the performance of these methods when they are

employed in the analysis of a transient ¯ow with moving boundary components.

2. GOVERNING EQUATIONS

The equations governing 3D compressible unsteady inviscid ¯ow are considered in the conservation

form
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@t
� @F

j

@xj

� 0; j � 1; 2; 3; �1�

where the summation convention is employed and
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R
Ru1

Ru2

Ru3

Re
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Here dij denotes the Kronecker delta, R, p and e denote the density, pressure and total speci®c energy

of the ¯uid respectively and uj is the component of the ¯uid velocity in the direction xj of a Cartesian

co-ordinate system. The set of equations is completed by the addition of the perfect gas equation of

state

p � �gÿ 1�R�eÿ 0�5ukuk�; �3�
where g is the ratio of speci®c heats.

Suppose that U is known at every point of a prescribed region Om at a certain time t� tm, i.e.

U�Um at time t� tm. The problem of interest here is then to determine the function U which satis®es

the initial condition, is a solution of the governing equations (1)±(3) in a space±time domain

D � �O�t�, tm 4 t) and satis®es appropriate boundary conditions Fn � njF
j � �Fn on the boundary

surface G(t) of O. Here nj denotes the component, in direction xj, of the unit outward normal to G(t).

42 O. HASSAN, E. J. PROBERT AND K. MORGAN

INT. J. NUMER. METH. FLUIDS, VOL. 27: 41±55 (1998) # 1998 John Wiley & Sons, Ltd.



3. SOLUTION PROCEDURE

3.1. Variational formulation

To develop a numerical solution algorithm, it is convenient to replace the classical formulation of the

problem by an equivalent weak variational formulation. To achieve this, we introduce a trial function

set t and a weighting function set w. These sets consist of all suitably smooth functions and, in

addition, all members of the trial function set satisfy the initial condition on O at time t� tm, i.e.

t � fUjU � Um on O at t � tmg: �4�
A weak variational formulation for the problem is then: ®nd U in t such that�T

tm

�
O�t�

@U

@t
W dO dt �

�T

tm

�
O�t�

@W

@xj

F j dO dt ÿ
�T

tm

�
G�t�

W �Fn dG dt �5�

for every member W of the weighting function set w and for all T> tm.

3.2. Approximate variational formulation

Using a fully unstructured tetrahedral mesh generator,12 the spatial solution domain O(t) is

discretized into a mesh of linear tetrahedral elements. Nodal points, numbered 1; 2; . . . ; p, are located

at the element vertices. Subsets t(p) and w(p) of the trial and weighting function set respectively are

de®ned by

t�p� � fU�p��xj; t�jU�p� � UJ �t�NJ �xj; t�; UJ �tm� � Um
J g; �6�

w�p� � fW �xj; t�jW � aJ NJ �xj; t�g; �7�
where J takes the values 1; 2; . . . ; p in the implied summation. Here NJ is the standard piecewise

linear ®nite element shape function (suitably modi®ed to allow for the mesh movement) which takes

the value unity at node J (located at x� xJ(t)) and zero at every other node, UJ is the value of U(p) at

node J and aJ is a constant. The superscript m denotes an evaluation at time t� tm. A discrete

approximate (Galerkin) variational formulation of the original problem may now be expressed as:

®nd U(p) in t(p) such that�T
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for I � 1; 2; . . . ; p. This variational statement requires further manipulation to convert it into a form

which is useful for the practical solution of problems involving moving boundaries.

Suppose that the mesh is moving with a velocity

v�p� � �v�p�1 ; v
�p�
2 ; v

�p�
3 �; �9�

where each velocity component has the piecewise linear representation

v�p�j � vjJ NJ : �10�
In this expression, vjJ denotes the component of the velocity of node J in the direction xJ. Then
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where the total time derivative denotes differentiation following the moving mesh. When this result is

employed in equation (8), it follows that the variational statement can be expressed in the alternative

form:9 ®nd U(p) in t(p) such that

d

dt
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for I � 1; 2; . . . ; p, where

F j��U�p�� � F j�U�p�� ÿ v�p�j U�p�; �F�n � �Fn ÿ njv
�p�
j U�p�: �13�

If the ¯ux terms are also assumed to vary between their nodal values in a piecewise linear fashion,

substitution of the assumed form for U(p) from equation (6) into equation (12) results in the

requirement that
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The quantities
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�
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denote the the entries in the consistent ®nite element mass matrix. In the current implementation this

matrix is replaced by the diagonal lumped mass matrix with entries

ML
I �

�
O�t�

NI dO �16�

and the solution is advanced over a time step Dt from time tm to time tm�1 via the explicit r-stage

time-stepping procedure

V
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In this expression the parameters a1; a2; . . . ; ar are assigned values which are appropriate to the

number of states, r, being employed. An edge-based representation is employed for the tetrahedral

mesh2 and the vector R is evaluated by a loop over the mesh edges. In this fashion it is relatively

straightforward to correct the central difference character of the time-stepping scheme by replacing

the actual ¯ux function by a consistent numerical ¯ux function. In this work this is achieved by using

a Roe ¯ux function over each edge of the mesh to achieve a ®rst-order-accurate scheme. Higher-order

accuracy is then attained by using simple TVD ideas.2
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4. MESH ADAPTIVITY

The generation of an initial mesh of tetrahedral elements is accomplished by the Delaunay

triangulation method with automatic point creation. In the automatic point creation procedure the

distribution of points is obtained by interpolation of the point spacing from the boundary nodes. The

method is enhanced by the use of sources, which provide a mechanism for clustering points. A source

has an amplitude, or strength, which speci®es the spacing at the source and a decay which determines

the rate at which this spacing varies away from the source. A distribution of sources placed in regions

where additional mesh resolution is required ensures a mesh which adequately resolves the initial

solution. The solution is advanced using the algorithm described in the previous section and at each

time step the co-ordinates of the points on the moving boundaries are updated according to the

prescribed movement of the geometry. Without a corresponding mesh adaptivity strategy the mesh

would become successively distorted and eventually invalid. However, simulations of three-

dimensional ¯ow can be computationally expensive and it is advisable to minimize the amount of

mesh adaptation which is performed.

4.1. Deforming mesh algorithm

Two methods have been investigated to achieve the mesh adaptivity which is required as the

computation progresses. The ®rst method considered is a deforming mesh algorithm which models

the mesh as a spring network, with nodal points on the outer boundary held ®xed while the

instantaneous locations of points on the moving boundary are speci®ed. The locations of the inner

nodes of the mesh are then determined by solving the static equilibrium equations that result from

summing the forces in the spring system at each node. The mesh-smoothing algorithm thus alters the

positions of the interior nodes without changing the topology of the mesh.

In contrast with a standard smoothing procedure, the deforming mesh algorithm does not relocate a

point at the centre of gravity of its neighbours. If the co-ordinates of node I at time tm are given by xm
I ,

then the new co-ordinates xm�1
I at time tm�1 � tm � Dt are obtained by the addition of a displacement

dm�1
I :

xm�1
I � xm

I � dm�1
I ; �18�

where dm�1
I is prescribed on the moving boundaries and is set equal to zero on any ®xed boundaries.

Hence the co-ordinates on ®xed boundaries remain unchanged while the co-ordinates on moving

boundaries change according to the speci®cation of the problem under consideration. The new

displacement at an internal node I is found by averaging the displacements of surrounding points and

iterating to convergence. This iteration takes as its starting value the displacement at I at the previous

time step, as follows:

d
�0�
I � dm

I ;

..

.

d
�k�
I �

PnI

p�1 d�kÿ1�
p

nI

; k � 1; 2; . . . ; q; �19�

..

.

dm�1
I � d

�q�
I :

In this formulation the summation extends over all the nodes surrounding node I and suf®cient

convergence is normally achieved by taking q� 5. By beginning the iterative procedure with the
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previous displacement at each node, the motion of the moving boundaries is allowed to spread

throughout the whole of the mesh.

4.2. Local remeshing with boundary recovery

The deforming mesh algorithm proves very effective for problems involving small amplitudes of

oscillation. However, if the problem under consideration involves the large-scale motion of a body,

the deforming mesh approach alone cannot be expected to suf®ce, as some elements will eventually

become either so stretched or so ¯attened that their presence will adversely affect the allowable time

step for the next iteration of the ¯ow solver. For such problems a local remeshing procedure, in which

distorted elements are removed and those portions of the mesh regenerated, has been implemented.

It is highly possible that distorted elements will occur in several regions and that their removal will

result in the creation of a number of separate holes in the mesh. Each hole will be bordered by a

collection of faces, some of which might possibly contain boundary points. The regeneration

procedure begins with a triangulation on the boundaries, using a Delaunay procedure with automatic

point creation12 applied in two dimensions. Since the positions of the sources have been updated in a

similar way to the co-ordinates of the moving body, this new triangulation will show an adaptation of

the mesh where additional resolution is required and the resulting triangular faces can be added to the

list of faces surrounding the holes to form closed regions. Nodes connected by this list of faces form

the starting point for the Delaunay mesh generation which is carried out in three dimensions.

Following the automatic point creation and connection by the Delaunay algorithm, the resulting

triangulation must be made boundary-conforming. Methods which have been reported previously12

do not ensure that the original surface triangulation is fully recovered, with the possibility of

additional points being introduced on the surface. However, that possibility is unacceptable in the

present case, as the `surface' triangulation bordering a hole is connected to the remainder of the mesh

and must be made fully conforming or complications of connection will result. An algorithm has been

devised to ensure that the boundary faces surrounding the hole are completely recovered. The

algorithm begins by identifying a face in the boundary discretization surrounding the hole which does

not appear in the newly generated mesh. A search is made over the edges of this face to determine

connected faces which also need to be recovered and a polygon is built enclosing the tetrahedra

which contain those faces. Faces in the original boundary discretization which lie within the polygon

are then added and, starting with that edge of the polygon with the smallest dihedral angle, a

tetrahedron is formed by closing the two adjacent faces to that edge. If this is continued, the polygon

can be ®lled with tetrahedra without creating any new points in the process. If another face which

needs to be recovered is identi®ed, the procedure is repeated until all the boundary faces surrounding

the hole have been recovered. The algorithm can be implemented as follows.

MFACE � total number of faces

LFACE�1 : NFACE� � list of connected faces to be recovered �where connected faces implies faces

sharing an edge�
LTETR�1 : NTETR� � list of tetrahedra intersecting faces to be recovered

LPOLY�1 : NPOLY� � list of faces enclosing the tetrahedra in LTETR

LEDGE�1 : NEDGE� � list of edges in LPOLY

1. LOOP over boundary faces, jf� 1 : MFACE

If any tetrahedron contains face jf GO TO 1

Set NFACE� 0

Insert jf into LFACE, the list of faces to be recovered
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1.1 Consider each face in the list LFACE

LOOP over three edges of face

IF edge does not exist increment NFACE and add face adjacent to edge to LFACE

ENDLOOP

IF new face has been added GOTO 1.1

LOOP over faces in LFACE

Set NTETR� 0

LOOP over tetrahedra, je, adjacent to the face

IF je intersects with the face increment NETTR and add je to LTETR

ENDLOOP

ENDLOOP

2. Set NPOLY� 0

LOOP over faces of elements in LTETR

IF face exists in list LPOLY THEN

Remove face from list

NPOLY�NPOLY7 1

ELSE

Add face to list

NPOLY�NPOLY� 1

ENDIF

ENDLOOP

3. Add faces to be recovered, NFACE, in the list LFACE, to the list LPOLY and form LEDGE.

4. Select the edge in LEDGE with smallest dihedral angle

Form tetrahedron by closing the two adjacent faces to that edge

Update the list LEDGE

Repeat until polygon is ®lled with tetrahedra

5. ENDLOOP

After the triangulation of each separate hole the nodal values of the solution at newly created points

can be obtained by interpolation from a background grid of the deleted elements of the previous mesh

using a search process based on an alternating digital tree.16

5. ALGORITHM FOR TRANSIENT ANALYSIS

With an ef®cient ¯ow solution procedure and an automatic mesh adaptivity capability the simulation

of pseudotransient and transient ¯ows with moving boundaries can be considered. Here it is assumed

that a pseudotransient simulation will consist of a sequence of steady state solutions, corresponding to

a sequence of locations in the time history of a moving body. These solutions will be computed on an

appropriate sequence of meshes, each new mesh being derived from its immediate precursor by

automatic mesh adaptivity. In the case of a truly transient simulation the moving boundaries will be

updated at each time step and the mesh adapted accordingly. An algorithm to advance the solution in

time can be written as follows.

1. Generate initial mesh using Delaunay triangulation with sources placed appropriately

2. Calculate element volumes, VOL0

3. LOOP K� 1,NLOOP
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Compute weights and cell volume

LOOP I� 1,NTIME

Until stopping condition is reached:

Advance the solution one time step

IF true transient THEN

Update co-ordinates of moving nodes

Update co-ordinates of sources

Apply deforming mesh algorithm

Calculate element volumes, VOLN

Compare VOLN with VOL0

IF VOLN< 0 for any element OR |(VOLN7VOL0)=VOL0|> g for at least b per

cent of elements THEN

Mark elements for removal

GOTO 4

ENDIF

ENDIF

ENDLOOP

ENDLOOP

4. IF true transient THEN

Remove marked elements together with a surrounding layer, producing holes in the mesh

bordered by collections of triangular faces

Regenerate holes using the Delaunay method

Interpolate nodal values of the solution on the new portions of the mesh

ELSE

Compute and mark co-ordinates of moving nodes in their new position

Remove layers of elements surrounding moving body until a hole has been created

containing all the marked co-ordinates

Update positions of moving nodes and sources

Regenerate hole using the Delaunay method

Interpolate nodal values of the solution of the new portions of the mesh

ENDIF

5. GOTO 2

In the application of this algorithm the values of NLOOP and NTIME depend on the problem being

considered. For a pseudotransient simulation the value of NLOOP is set equal to the number of stages

in the speci®ed time history and NTIME is set equal to the number of time steps required for each

steady state solution. In this case the weights and cell volumes are only calculated at the beginning of

a computation on any particular mesh, so that the bene®ts of the edge-based data structure are gained.

In the case of a transient simulation the value of NTIME should, strictly speaking, be equal to one.

The deforming mesh algorithm is applied at each time step and hence, for full accuracy, the weights

and cell volumes should also be recalculated at each time step. Because of the computational expense

which this strategy implies, the effect of increasing the value of NTIME has been investigated and a

value of NTIME� 5 has been adopted in the calculations reported here. This value has been found to

reduce the expense of the calculation signi®cantly without a measurable degradation of the solution

quality. The value of NLOOP is set equal to the number of time steps required for the full

computation to be completed.
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Generally the values of g� 0�2 and b� 0�5 are preset, so that regeneration will take place if 0�5 per

cent of the elements have changed in volume by at least 20 per cent, and these values have been

found to work well with a range of applications.

6. NUMERICAL EXAMPLES

The ®rst test case con®guration is a missile mounted initially underneath a wing and subsequently

released. This example is used to demonstrate the performance of the method when applied to a

pseudotransient problem. The time history of the store trajectory is determined by a sequence of data

which specify the translational motion of the nose of the missile relative to its original position at

time t� 0 and the rotational motion in terms of an axis system which is ®xed on the missile with its

origin at the nose. The freestream ¯ow conditions correspond to a Mach number M1 � 0�8 and the

body is initially at an angle of attack a0� 5�0�. A steady state solution is computed by performing

2000 time steps of the ¯ow algorithm on the initial mesh, which consists of 369,862 elements and

63,889 nodes. A detail of this mesh showing the position of the missile relative to the wing, together

with the corresponding computed Mach number contours, is shown in Figure 1. This ®gure shows the

mesh and Mach number contours on the surfaces of the wing and the missile. Also shown are a detail

of a cut through the mesh on a plane passing through a section of the wing and the missile and the

corresponding computed Mach number contours in that plane. A sequence of adapted steady state

solutions is computed at subsequent positions in the missile trajectory by applying the algorithm

described in the previous section and implementing the appropriate pseudotransient option. Each of

these solutions is obtained by performing 2000 time steps of the ¯ow algorithm on a mesh adapted to

the position of the missile at the appropriate point in its time history, with the results displayed in

Figure 1.

The second example considered is the truly transient development of the ¯ow over a wing with

freestream conditions corresponding to a Mach number M1 � 0�713 and an angle of attack

a0� 0�52. The wind is oscillating sinusoidally with a motion which is described in terms of the pitch

and heave at speci®ed sections along the wing, with those parameters being interpolated linearly at

intermediate points. Each section i pitches and heaves sinusoidally as

a�t� � ai sin�ot�; z�t� � zi sin�ot�; �20�
where the amplitude of pitch, ai, is at its maximum value of 1� at the wing tip and the frequency

parameter o� 1�9873. The maximum amplitude of heave, z� 1 m (scaled for a semispan of

0�73254 m), also occurs at the wing tip. The initial mesh consists of 454,010 elements and 76,227

nodes and the initial solution is the converged steady state solution with no oscillation taking place.

Figure 2 shows a detail of the initial mesh on the surface of the wing and in the symmetry plane. The

computed pressure coef®cient distributions produced at three levels in the third cycle of the

computation on a plane passing through a section of the wing taken at 98 per cent of the chord are

displayed in Figure 3. The lift at intervals in the third cycle of the computation is shown in Figure 4.

During the course of the calculation it was noted that with the parameters set at g� 0�2 and b� 0�5,

no remeshing occurred and the deforming mesh algorithm alone was suf®cient to adapt the mesh for

the small-scale displacements which this problem entailed.

The ®nal example considered illustrates the performance of the proposed procedure for the truly

transient development of the ¯ow over a three-dimensional body which is subject to large

displacements. The freestream conditions correspond to a Mach number M1 � 0�3 and the body is

initially at zero angle of attack. An initial steady state solution is computed by performing 2000 time

steps of the ¯ow algorithm on the initial mesh. The body is then moved through the domain with a
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Figure 1. Pseudotransient motion of a missile con®guration mounted initially underneath a wing, showing details of sequence
of meshes and computed Mach number contours

50 O. HASSAN, E. J. PROBERT AND K. MORGAN

INT. J. NUMER. METH. FLUIDS, VOL. 27: 41±55 (1998) # 1998 John Wiley & Sons, Ltd.



Figure 1. (continued )
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Figure 2. Oscillating wing with freestream conditions M1 � 0�713 and a0� 0�52: detail of surface triangulation of initial mesh

Figure 3. Oscillating wing with freestream conditions M1 � 0�713 and a0� 0�52: distribution of pressure coef®cient Cp over
wing at a section taken at 98 per cent of chord, at intervals in third cycle of computation
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prescribed velocity and rotation. A selection of the sequence of meshes produced during the

computation and the corresponding computed Mach number contours is shown in Figure 5. During

the course of the computation the remeshing parameters were set at g� 0�2 and b� 0�5 and 10

remeshings were required.

7. CONCLUSIONS

The solution of transient problems involving compressible inviscid aerodynamic ¯ows in three

dimensions, in the presence of moving boundary components, by unstructured mesh methods has

been considered. A strategy for accomplishing the necessary mesh adaptation has been discussed and

a promising approach has been implemented. However, further work is necessary to con®rm the

accuracy of this approach before it can be con®dently employed in the analysis of large-scale

practical problems.
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Figure 4. Oscillating wing with freestream conditions M1 � 0�713 and a0� 0�52: lift at intervals in third cycle of computation
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Figure 5. Transient motion of a 3D body subject to large displacements, showing details of mesh and corresponding Mach
number contours at different locations
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